Structured Learning for Cell Tracking
نویسندگان
چکیده
We study the problem of learning to track a large quantity of homogeneous objects such as cell tracking in cell culture study and developmental biology. Reliable cell tracking in time-lapse microscopic image sequences is important for modern biomedical research. Existing cell tracking methods are usually kept simple and use only a small number of features to allow for manual parameter tweaking or grid search. We propose a structured learning approach that allows to learn optimum parameters automatically from a training set. This allows for the use of a richer set of features which in turn affords improved tracking compared to recently reported methods on two public benchmark sequences.
منابع مشابه
Eye-Tracking Method’ Usage for Understanding the Cognitive Processes in Multimedia Learning
Introduction: Designing multimedia learning environments should consist of the evidence-based study and principals about the human learning process. Eye tracking is a way based on the learner processing of learning materials which presented in multimedia learning environments. The aim of the study was to examine the use of the eye-tracking method to investigate the cognitive processes in m...
متن کاملPerfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control
In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...
متن کاملA Q-learning Based Continuous Tuning of Fuzzy Wall Tracking
A simple easy to implement algorithm is proposed to address wall tracking task of an autonomous robot. The robot should navigate in unknown environments, find the nearest wall, and track it solely based on locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet requirements of autonomous navigations. Fuzzy if-then rules provide a reliable decision maki...
متن کاملOnline structured learning for real-time computer vision gaming applications
In recent years computer vision has played an increasingly important role in the development of computer games, and it now features as one of the core technologies for many gaming platforms. The work in this thesis addresses three problems in real-time computer vision, all of which are motivated by their potential application to computer games. We first present an approach for real-time 2D trac...
متن کاملMetric Learning Driven Multi-Task Structured Output Optimization for Robust Keypoint Tracking
As an important and challenging problem in computer vision and graphics, keypoint-based object tracking is typically formulated in a spatio-temporal statistical learning framework. However, most existing keypoint trackers are incapable of effectively modeling and balancing the following three aspects in a simultaneous manner: temporal model coherence across frames, spatial model consistency wit...
متن کامل